STEAM+ 科技实验课程的实施策略研究

赵玲玲

(大连市甘井子区中小学生科技活动中心,辽宁 大连 116091)

摘 要:科技实验课程隶属于综合实践活动课的一部分内容,设计的趣味小实验涵盖物理、数学等多个学科的知识,是一门以培养学生科学素养为宗旨的国家义务教育阶段的核心课程。本活动课以"自己探究、自己发现"为核心,着重发展探究意识、科学精神、热爱学习、劳动意识、责任担当、实践创新等六大素养,与STEAM教育中科学、技术、工程、艺术和数学不谋而合。但是本课程内容在工程、技术方面缺乏系统认识和实践操作,尤其是综合利用所学知识方面,能力欠缺,这也是学生强烈希望得到发展的方面。基于此,我在课堂教学过程各环节中都渗透以STEAM理念,如果综合实践活动中的科技实验课程在解决问题时,更多地利用来自科学、技术、工程、艺术和数学学科知识,学生实践创新能力、将来开发高质量产品的能力正是21世纪学生发展核心素养的内容。

关键词: STEAM理念 实验课程 教学策略

中图分类号: G632 文献标识码: A 文章编号: 1003-9082 (2023) 02-0238-03

在STEAM视域下实验课程教学(学习)中,我将以下 几点实施策略融入到整个课堂。

一、真实情景导入, 培养应用意识

STEAM教育理念注重学习与实际生活的联系,重点导向解决生活中的真实问题。教师在创设的学习情境时既要注重生活化又不能却忽略其真实性。我们创设的情境最好是自然生活、社会生活、自我生活中的情境,是学生身边真实存在的。才能体现科学的价值。创设与学生的学习、生活息息相关的真实情境,可以激发学生的学习兴趣,同时也能培养学生的实际应用意识。学生容易把学习内容与自己的日常生活经验联系起来,进而激起热爱学习的兴趣,产生学习动力[1]。

以"沉浮子——潜水艇"小实验为例,设计这个实验目的就是让学生了解潜水艇的工作原理。因此,我准备了实验器材:矿泉水瓶、小玻璃瓶、水,橡皮泥自己制作一个"潜水艇",并情境导入展示:在塑料瓶里灌满水,把小玻璃瓶倒扣在大塑料瓶里,挤压大塑料瓶,这时小玻璃瓶在水里灵活自如,上下游动。魔力般的表演顿时吸引了学生的眼球。其实,小瓶就是一个活生生的潜水艇,贴近于现实生活,一下子勾起了学生探究的欲望。学为所用,真实而又生动的例子是最好的兴趣老师。实践操作环节,"听话的小瓶"虽然说看着简单,但是真正制作这样一个实验装置却有一定难度,要靠同学们反复实验调整小瓶水量,才能制作出"听话的小瓶"。在调试过程中使学生懂得哪怕一次次失败也要再试一试。教师指导学生制定活动主题,根据

提出的问题确定活动主题,学生根据感兴趣的内容选择晓主题,实现二次分组。最后活动成果展示,这里的设计意图是,在每个学生都做实验的基础上,使大家认识到小瓶的沉浮是和瓶中的水量有关系,使学生在自己动手做的过程中,提高实践能力和想象能力;在小组合作中认识到团队精神的重要性;在一次次失败中,总结出持之以恒的重要性。学生以组为单位进行展示交流,并得出结论,知道听话小瓶的条件和原因。

二、构建"探究式"学习课堂

如果没有探求新知的欲望、团队合作的意识,学生就 很难成为真正意义上的学习者。综合实践活动课程不能用 "教"的方式实施,但也不是放任不管,要激发起学生探究 的欲望,重要的是构建起探究式的学习课堂。

还是以"沉浮子——潜水艇"为例,以真实情境激发兴趣之后,教师提出问题并分析实验影响因素: 1、你了解潜水艇吗? 2、怎么能让潜水艇自由的上下沉浮呢? 3、制作潜水艇需要哪些步骤? 4、潜水艇的工作原理是什么呢? 只有解决出这些问题,才能制作出潜水艇,而这些问题,就需要学生掌握科学、物理、手工、工程等多门学科知识。针对这个实验,我们可以制定实验方案,以便更好地记录实验过程。在STEAM教育理念指导下,每个学生做出的潜水艇都有所区别。在材料选择上,有的使用的是笔帽和橡皮泥,有的使用的是玻璃瓶。接下来就是动手做和理论知识的应用,瓶子里面加多少水,把握好重力与浮力的关系,需要不断动手反复调试。有的潜水艇能够轻松自如上下浮

动,有的则需要费大力气才能控制。根据出现的问题,再分析,再解决。教师在这里作为探究性学习的指导者,要引导学生经历一个完整的实验过程,即提出问题、猜想假设、分析影响因素、动手实验、获取证据、得出结论、理论联系生活实际。这其实已经融入了STEAM教育理念,使学生的创新与独立思考能力、动手能力与解决问题能力得到了增强,使他们成为幸福的终身学习者。

三、整合多学科知识促进贯通,实施融通性教学

STEAM教育理念讲究的是知识融合,即让学生把所有的知识融会贯通、学以致用。它将科学、技术、工程、艺术和数学等不同领域的学科整合在一起,特别强调学生要有融合素养,在教育教学中要有利用多学科的知识解决所有整合型问题的能力^[2]。STEAM教育打破学科壁垒,打通各学段的隔阂,实行通识教育,实现学科知识在解决生活中实际问题的融会贯通。我们科技实验室里的实验涉及物理、数学等几十个小实验,操作过程可分为以下几种,在实验研究中既要学会科学知识,还要有品德教育的思想,如:培养学生的合作意识和劳动意识,能够通过思考和动手操作,探究科学知识,敢于说出自己的想法。

1.自主选择完成实验过程

要尽自己所能来完成实验,可以记录,可以根据自身情况选择贴近生活实际、容易得出结论的实验。如实验"吸力从哪里来""你拔过罐吗?"等与气压有关知识的实验。

2.同伴之间讨论完成实验过程

学生在这里要充分发挥其主观能动性的作用,发散思维,大胆创新。学生以小组为单位解决实验过程中有争议或稍有难度的问题。如实验:"龙为什么会吐水""喷泉的秘密在哪里"等。

3.师生共同研讨实验过程

此过程主要解决有难度或学生有争议而未解决的问题。 教师要鼓励学生求异思维、多种方法、多角度的解决问题。如数学实验"最少称几次""如何摆花盆"等。

例如,我们了解了光的传播定律和反射原理的一些知识后,就可以理论联系于生活当中,动手做一个潜望镜,这就需要数学、科学、工程、技术的整合,为了实物的美观,还需要艺术上的设计。制作潜望镜需要的工具有小方镜、硬纸板。硬纸板的宽度应为小方镜宽度的4倍,长度可以根据需要自己制定。纸板越长,潜望镜越高。方法操作如下,现在纸板上画三条横线,沿着所划的线折叠后,然后把遮挡光线的部分剪去,做成一个长方形的盒子,用报纸把它粘好,再用胶带把小方镜子粘好,注意,小方镜和

纸盒之间的交角等于45°。两面小方镜子平行对好。一个精美的潜望镜通过精心设计就完成了。用潜望镜来观察窗外的景物是很有趣的,也可以用它来捉迷藏。当然,人们制造潜望镜主要是为科学研究和国防服务的。

学生在以上活动中选取的活动方式可以多种多样,不拘一格,只要是适合自己的就是最好的,不能强行分配。选择哪一种形式,取决于学生的能力水平。在学生独立开展活动能力比较弱的时候,由他们个人完成主题活动难以实现,选择师生共同研讨的方式就相对恰当。而当学生具备了一定的实践能力的时候,可以允许他们个人开展独立活动。因此,教师在指导学生开展活动中,在注意让每一个学生都参与、团结协作的同时,还要有意识地给予学生独立思考的时间和空间,引导学生形成自己的逻辑分析和逻辑判断,尤其是遇到自己感兴趣的问题或者有不同见解的时候,教师要引导学生深入探究,鼓励学生提出自己的独到见解。

四、多元评价促进学生发展

基于STEAM理念,教学评价设计需坚持整体性和发展性原则。学生在综合实践活动中的各种表现是他们综合素质评价的重要内容,也是升学录取中综合评价的重要参考。发展导向的评价理念与人们思维中以分数决出高下的评价理念不同,强调的是发展潜能,认识自我,促进发展,要保证客观、真实、可靠。而且评价中还要兼顾整体观和大局观^[3]。以下是在本实验活动课中,教师设计的一个评价表格,详见表1。

以上表格是实验课堂中也是整个综合实践活动中比较常 见、常用的评价表格,在这个表格中评价项目主要以本课 的课程目标为导向,评价内容关注了活动的全过程、各个 环节,采用了鼓励性语言、等级评价。但是我们发现,表 格中缺少多主体参与评价,有效信息难以获得,难以还原 学生在活动过程中的表现,无法展示出学生独特的一面。 基于此,实验活动课程评价流程可以如下: 收集活动过程 资料(写实记录)——分类整理(制作档案袋)——展示交 流——自我评价、同伴互评、教师评价——记入个人综合 素质评价档案。对活动过程和结果的写实记录是整个综合 实践活动评价的基础性材料。写实记录评价与量表式评价 不同, 指向的是个人的成长经历, 能够更加真实地反映学 生在参与整个活动中的各种收获。写实记录的完成人是学 生,内容不仅是对活动完成情况的概述,还要总结、反思 自己活动过程中的得失,实质上也是对个人成长、未来发 展的思考。

表1 实验活动过程评价量表

评价项目	评价内容	完成情况		
		优秀	良好	加油
价值体认	养成严禁的科学态度,树立科学精神。			
	具有小组合作的团队意识,形成集体荣誉感。			
	能够正确评价自己和他人,肯定自身优点,有自信心。			
责任担当	通过实验操作,养成乐于动手动脑的习惯。			
	能自觉维护操作台及活动室的卫生清洁,养成良好的劳动习惯和品质,形成服务他人的意识。			
问题解决	通过实验探究,认识虹吸现象、大气压力等物理知识。			
	能够在操作过程中,提出新想法,生成新问题。			
	激发探究动手实践的兴趣;能在小组讨论、操作等过程中,提出自己的建议,发现并解决操作中出现的问题。			
创意物化	在动手实践的过程中, 创造性的设计图纸, 通过熟练使用剪刀、玻璃漏斗等工具剪裁、设计制作喷泉等实验。			
	能够理论联系实际,用科学解释生活中的物理现象,并试着找到解决问题的方法。			
我的收获				
我的感悟		·		
我的问题				

五、实践活动拓展并延伸

学生来科技实验室活动,通过动手实践探究,收获了成果。但是课后的思考远大于有限的课堂探究。另外本课程也体现了综合实践中的开放性特点,这也促使了课后拓展延伸的必要性。课程内容的选择要打破学科界限,避免讲话学习目标,要始终关注学生活动的生成性目标与生成性主题并引导其发展,特别珍视和发展学生在活动过程中产生的奇思妙想,并为其创造性发展开辟广阔的时空。我们实验室里设计小实验内容涉及面非常广泛,其学习场所也要突破教室、学校围墙、把学生的成长环境作为学习场所,将实践活动的组织置于家庭、学校、社区的持续互动中,不断的去拓展时空和内容,同时促进课内与课外、学习与生活、学校与社会的有机连接。

课堂活动只拉开学生思维过程的序幕,为他们提供一种思考的方法和方式。结合学生当天活动的实际表现和整体水平,教师提出有思考价值的问题,例如:"恐龙"为什么会吸水?是一种有趣的虹吸现象。上网查找,大家会发现很多资料:早在宋代,人民发明的九龙杯就是运用了这个道理,上面是一只杯,杯中刻有一只精美昂首向上的龙,杯的外壁上绘有八条龙,底部是一块圆盘和空心的底座。斟酒时,如果酒水适中,滴酒不漏,如果超过其中的限量,酒就会通过"龙身"的虹吸作用,将酒全部吸入底座,所以成为九龙"公道杯"。

在思考延伸阶段中提出的问题能够让学生开动脑筋、发散思维,提升学生的跨学科知识整合能力,使课堂中的问题得到进一步拓展,使学生对科学观点不断探究,不断激发,为将来成为科学家奠定基础。

1.今天你都解决了什么问题?还有哪些问题没有解决? 为什么没有解决?(通过提问,了解学生对实验的反馈信息)

2.你已经解决的问题答案是唯一的吗?是你的最高水平 发挥吗?(培养学生的发散思维,对多答案的问题加以点 拨。如18个球的问题同81、82个球的解决方法是否一样?)

3.通过今天的学习, 你是否有新的思考和打算?

作为教师,我们要鼓舞学生对未知科学领域进行深入分析,引导学生多看书、多上网查资料、多学习。如观看科学领军人物视频(载人潜水器奋斗者刘烨瑶)视频。学习"大国工匠"的"专心致志""淡泊名利",感受享誉世界的"中国制造"所到来的民族自豪感,激发要掌握劳动技术和技能强烈愿望。

以上几点是我在实验课中渗入STEAM教育理念的一些实施策略。STEAM教学策略研究是一个外延相当广泛的课题,值得研究的问题很多,我在研究过程中,仅仅是涉及到了一些表面的问题,对工程、技术的融合,还未达到一定的深度,在今后的研究过程中,我将进一步拓宽思路和视野,从更多角度,对STEAM的教学策略进行研究。

参考文献

[1]赵慧臣,陆晓婷.开展STEAM教育,提高学生创新能力—— 访美国STEAM教育知名学者格雷特·亚克门教授[J].开放教 育研究,2016,22(05):4-10.

[2]傅骞,刘鹏飞.从验证到创造——中小学STEM教育应用模式研究[J].中国电化教育,2016(04):71-78+105.

[3]余胜泉,胡翔.STEM教育理念与跨学科整合模式[J].开放教育研究,2015,21(04):13-22.